ທ່ານສາມາດຫມັ້ນໃຈໄດ້ໃນການຊື້ 20S 24S 60V 72V 75A smart BMS ທີ່ມີຄຸນນະພາບສູງສໍາລັບການທົດແທນການເຊົ່າຫມໍ້ໄຟແມ່ນ BMS ຈາກພວກເຮົາ. ພວກເຮົາຫວັງວ່າຈະຮ່ວມມືກັບທ່ານ, ຖ້າທ່ານຕ້ອງການຮູ້ເພີ່ມເຕີມ, ທ່ານສາມາດປຶກສາກັບພວກເຮົາໃນປັດຈຸບັນ, ພວກເຮົາຈະຕອບທ່ານໃຫ້ທັນເວລາ!
ນີ້ແມ່ນ FY•X ຄຸນະພາບສູງ 20S 24S 60V 72V 75A smart BMS ສໍາລັບການທົດແທນການເຊົ່າຫມໍ້ໄຟແມ່ນ BMS ອອກແບບພິເສດໂດຍ Huizhou Feiyu New Energy Technology Co., Ltd. ສໍາລັບຊຸດຫມໍ້ໄຟລົດຖີບໄຟຟ້າໃນຕະຫຼາດໃຫ້ເຊົ່າ. ມັນເຫມາະສົມສໍາລັບຫມໍ້ໄຟ lithium 20-cell ທີ່ມີຄຸນສົມບັດທາງເຄມີທີ່ແຕກຕ່າງກັນ, ເຊັ່ນ: lithium ion, lithium polymer, lithium iron phosphate, ແລະອື່ນໆ.
BMS ແມ່ນມີໂມດູນ GPRS, ເຊິ່ງສາມາດລາຍງານຂໍ້ມູນການຈັດວາງແບັດເຕີລີໄດ້ທັນທີ ແລະຂໍ້ມູນແຮງດັນ, ປັດຈຸບັນ, ອຸນຫະພູມ ແລະຂໍ້ມູນສະຖານະປ້ອງກັນຂອງແບັດເຕີລີ່ທີ່ສອດຄ້ອງກັນ. ມັນສະຫນັບສະຫນູນຟັງຊັນທີ່ມີປະສິດທິພາບເຊັ່ນ: ການຍົກລະດັບເຟີມແວທີ່ບໍ່ມີການສູນເສຍຈາກໄລຍະໄກແລະການລັອກໄລຍະໄກຂອງຊຸດຫມໍ້ໄຟ.
ມັນມີການໂຕ້ຕອບການສື່ສານ CAN ທີ່ສາມາດນໍາໃຊ້ເພື່ອກໍານົດແຮງດັນປ້ອງກັນຕ່າງໆ, ປະຈຸບັນ, ອຸນຫະພູມແລະຕົວກໍານົດການອື່ນໆ, ເຊິ່ງມີຄວາມຍືດຫຍຸ່ນຫຼາຍ. ແລະຕູ້ສາກໄຟໄດ້ຖືກກໍານົດໂດຍຜ່ານການສື່ສານ CAN. ຕູ້ສາກໄຟທີ່ບໍ່ໄດ້ກຳນົດໄວ້ບໍ່ສາມາດສາກແບັດໄດ້ຕາມປົກກະຕິ. ຕູ້ສາກໄຟໄດ້ຮັບການສະຫນັບສະຫນູນເພື່ອຍົກລະດັບການເຮັດວຽກຂອງເຟີມແວຂອງ BMS ຜ່ານການສື່ສານ CAN ໂດຍບໍ່ມີການສູນເສຍ. ກະດານປ້ອງກັນມີຄວາມສາມາດໃນການໂຫຼດທີ່ເຂັ້ມແຂງແລະກະແສໄຫຼທີ່ຍືນຍົງສູງສຸດສາມາດບັນລຸ 75A.
● 20 ຫມໍ້ໄຟແມ່ນປ້ອງກັນເປັນຊຸດ.
● ການສາກໄຟ ແລະ ຂັບໄລ່ແຮງດັນ, ກະແສໄຟຟ້າ, ອຸນຫະພູມ ແລະ ໜ້າທີ່ປ້ອງກັນອື່ນໆ.
● ຟັງຊັນປ້ອງກັນວົງຈອນສັ້ນຂາອອກ.
●ອຸນຫະພູມຫມໍ້ໄຟສອງຊ່ອງ, ອຸນຫະພູມສະພາບແວດລ້ອມ BMS, ການກວດຫາອຸນຫະພູມ FET ແລະການປົກປ້ອງ.
● ຟັງຊັນການດຸ່ນດ່ຽງແບບ Passive.
● ການຄຳນວນ SOC ທີ່ຖືກຕ້ອງ ແລະ ການປະເມີນເວລາຈິງ.
● ຕົວກໍານົດການປ້ອງກັນສາມາດໄດ້ຮັບການປັບຜ່ານຄອມພິວເຕີແມ່ຂ່າຍ.
● CAN ການສື່ສານສາມາດຕິດຕາມຂໍ້ມູນແບັດເຕີລີ່ຜ່ານຄອມພິວເຕີແມ່ຂ່າຍ ຫຼືເຄື່ອງມືອື່ນໆ.
● ຫຼາຍໂໝດການນອນ ແລະວິທີການປຸກ.
● ດ້ວຍຟັງຊັນການກວດຫາ HALL (ການຄວບຄຸມການໄຫຼ).
● ດ້ວຍຟັງຊັນການກວດຫາ HALL (ລະຫັດທີ່ຢູ່).
ຮູບ 1: ມຸມເບິ່ງດ້ານຫນ້າ BMS, ສໍາລັບການອ້າງອີງເທົ່ານັ້ນ
ຮູບທີ 2: ຮູບພາບດ້ານຫຼັງຂອງ BMS, ສໍາລັບການອ້າງອີງເທົ່ານັ້ນ
ຂໍ້ມູນຈໍາເພາະ |
ຕ່ຳສຸດ |
ພິມ. |
ສູງສຸດ |
ຜິດພາດ |
ໜ່ວຍ |
|||||||||
ແບັດເຕີຣີ |
||||||||||||||
ປະເພດຫມໍ້ໄຟ |
LiCoxNiyMnzO2 |
|
||||||||||||
ຈໍານວນຂອງສາຍຫມໍ້ໄຟ |
20ສ |
|
||||||||||||
ຄະແນນສູງສຸດຢ່າງແທ້ຈິງ |
||||||||||||||
ການປ້ອນຂໍ້ມູນແຮງດັນ |
|
84 |
|
±1% |
V |
|||||||||
ກຳລັງສາກໄຟໃໝ່ |
|
25 |
|
|
A |
|||||||||
ແຮງດັນຜົນຜະລິດອອກ |
56 |
72 |
84 |
|
V |
|||||||||
ປ່ອຍຜົນຜະລິດໃນປະຈຸບັນ |
|
|
75 |
|
A |
|||||||||
ປະຈຸບັນເຮັດວຽກແບບຍືນຍົງ |
≤75 |
A |
||||||||||||
ສະພາບແວດລ້ອມ |
||||||||||||||
ອຸນຫະພູມປະຕິບັດງານ |
-30 |
|
75 |
|
℃ |
|||||||||
ຄວາມຊຸ່ມຊື່ນ |
0% |
|
|
|
RH |
|||||||||
ຮ້ານ |
||||||||||||||
ອຸນຫະພູມການເກັບຮັກສາ |
-20 |
|
65 |
|
℃ |
|||||||||
ຄວາມຊຸ່ມຊື້ນ |
0% |
|
|
|
RH |
|||||||||
ຕົວກໍານົດການປົກປັກຮັກສາ |
||||||||||||||
ຊອບແວມູນຄ່າການປົກປ້ອງ overvoltage |
|
4.23 |
|
±50mV |
V |
|||||||||
ຊອບແວປ້ອງກັນ overvoltage ຊັກຊ້າ |
1 |
2 |
4 |
|
S |
|||||||||
ມູນຄ່າການປົກປ້ອງ overvoltage ຂອງຮາດແວ |
|
4.3 |
|
±50mV |
V |
|||||||||
ຄວາມລ່າຊ້າການປ້ອງກັນແຮງດັນເກີນຂອງຮາດແວ |
1 |
2 |
4 |
|
S |
|||||||||
ມູນຄ່າການປ່ອຍການປົກປ້ອງ overvoltage |
|
4.1 |
|
±50mV |
V |
|||||||||
ຊອບແວມູນຄ່າການປົກປ້ອງ over-discharge |
|
2.8 |
|
±100mV |
V |
|||||||||
ຊອບແວປ້ອງກັນການໄຫຼເກີນຄວາມລ່າຊ້າ |
1 |
3 |
5 |
|
S |
|||||||||
ຄ່າປ້ອງກັນການໄຫຼເກີນຂອງຮາດແວ |
|
2.5 |
|
±100mV |
V |
|||||||||
ຄວາມລ່າຊ້າການປ້ອງກັນການໄຫຼເກີນຂອງຮາດແວ |
2 |
4 |
6 |
|
S |
|||||||||
ມູນຄ່າການປ່ອຍການປົກປ້ອງ over-discharge |
|
3.0 |
|
±100mV |
V |
|||||||||
ຊອບແວສາກໄຟເກີນ 1 ມູນຄ່າການປົກປ້ອງ |
27 |
30 |
33 |
|
A |
|||||||||
ຊອບແວສາກໄຟເກີນ 1 ຄວາມລ່າຊ້າຂອງການປົກປ້ອງ |
12 |
15 |
18 |
|
S |
|||||||||
ກຳລັງສາກລຸ້ນປ້ອງກັນກະແສໄຟເກີນ ຊັກຊ້າ |
ຊັກຊ້າ 30 ± 5 ວິເພື່ອປົດປ່ອຍຫຼືປ່ອຍອັດຕະໂນມັດ |
|||||||||||||
ຊອບແວປ້ອງກັນກະແສໄຟຟ້າໄຫຼເກີນ ຄ່າ 1 |
75 |
80 |
85 |
|
A |
|||||||||
ຊອບແວປ້ອງກັນກະແສໄຟຟ້າໄຫຼເກີນ ຊັກຊ້າ 1 |
1 |
2 |
3 |
|
S |
|||||||||
ປ້ອງກັນກະແສໄຟຟ້າເກີນ ເງື່ອນໄຂການປ່ອຍການປົກປ້ອງ |
ຊັກຊ້າ 30 ± 5 ວິເພື່ອປົດປ່ອຍຫຼືສາກໄຟໂດຍອັດຕະໂນມັດ |
|||||||||||||
ການປ້ອງກັນການໄຫຼເກີນຂອງຮາດແວ ຄ່າ 1 |
200 |
220 |
240 |
|
A |
|||||||||
ການປ້ອງກັນການໄຫຼເກີນຂອງຮາດແວ ຊັກຊ້າ 1 |
10 |
20 |
100 |
|
ນາງສາວ |
|||||||||
ປ່ອຍການປ່ອຍການປ້ອງກັນ overcurrent ເງື່ອນໄຂ |
ຊັກຊ້າ 30 ± 5 ວິເພື່ອປົດປ່ອຍຫຼືສາກໄຟໂດຍອັດຕະໂນມັດ |
|||||||||||||
ຄ່າປົກປັກຮັກສາການຂາດສາຍດ່ວນ |
300 |
440 |
800 |
|
A |
|||||||||
ການຊັກຊ້າໃນການປ້ອງກັນວົງຈອນສັ້ນ |
|
400 |
800 |
|
ພວກເຮົາ |
|||||||||
ການປ້ອງກັນວົງຈອນສັ້ນລົງ ເງື່ອນໄຂການປ່ອຍ |
ຕັດການເຊື່ອມຕໍ່ ການໂຫຼດແລະການຊັກຊ້າ 30 ± 5s ເພື່ອປົດປ່ອຍອັດຕະໂນມັດຫຼືການສາກໄຟ |
|||||||||||||
ຄໍາແນະນໍາກ່ຽວກັບວົງຈອນສັ້ນ |
ສັ້ນ ລາຍລະອຽດຂອງວົງຈອນ: ຖ້າຫາກວ່າປັດຈຸບັນ short-circuit ແມ່ນຫນ້ອຍກ່ວາຕໍາ່ສຸດທີ່ ມູນຄ່າຫຼືສູງກວ່າມູນຄ່າສູງສຸດ, ການປົກປ້ອງວົງຈອນສັ້ນອາດຈະ ລົ້ມເຫລວ. ຖ້າກະແສໄຟຟ້າລັດວົງຈອນເກີນ 1000A, ການປ້ອງກັນວົງຈອນສັ້ນແມ່ນ ບໍ່ໄດ້ຮັບການຮັບປະກັນ, ແລະການທົດສອບການປ້ອງກັນວົງຈອນສັ້ນແມ່ນບໍ່ແນະນໍາ. |
|||||||||||||
|
65 |
70 |
75 |
|
℃ |
|||||||||
ລະບາຍອາກາດປ້ອງກັນອຸນຫະພູມສູງ ຄ່າ |
55 |
60 |
65 |
|
℃ |
|||||||||
ປ່ອຍມູນຄ່າການປ່ອຍອຸນຫະພູມສູງ |
-30 |
-25 |
-20 |
|
℃ |
|||||||||
ປ່ອຍການປ້ອງກັນອຸນຫະພູມຕ່ໍາ ຄ່າ |
-25 |
-20 |
-15 |
|
℃ |
|||||||||
ປ່ອຍມູນຄ່າການປ່ອຍອຸນຫະພູມຕ່ໍາ |
55 |
60 |
65 |
|
℃ |
|||||||||
ການສາກໄຟປ້ອງກັນອຸນຫະພູມສູງ ຄ່າ |
45 |
50 |
55 |
|
℃ |
|||||||||
ການສາກໄຟມູນຄ່າການປ່ອຍອຸນຫະພູມສູງ |
-8 |
-3 |
2 |
|
℃ |
|||||||||
ການສາກໄຟມູນຄ່າການປົກປ້ອງອຸນຫະພູມຕ່ໍາ |
-3 |
2 |
7 |
|
℃ |
|||||||||
ກຳລັງສາກຄ່າການປ່ອຍອຸນຫະພູມຕໍ່າ |
||||||||||||||
ຕົວກໍານົດການສົມດຸນ |
4100 |
|
|
|
mV |
|||||||||
ຄ່າແຮງດັນໄຟຟ້າທີ່ດຸ່ນດ່ຽງ |
25 |
|
|
|
mV |
|||||||||
ຄວາມແຕກຕ່າງຂອງຄວາມກົດດັນເປີດສົມດຸນ |
35mA ຄວາມສະເໝີພາບສະຖິດ |
|||||||||||||
ປະຈຸບັນສົມດຸນ |
ຫັນ ເປີດ: ເປີດເມື່ອຄວາມແຕກຕ່າງກັນແຮງດັນແມ່ນ 25-200mV |
|||||||||||||
ລາຍລະອຽດຄວາມສົມດຸນ |
||||||||||||||
ຕົວກໍານົດການບໍລິໂພກພະລັງງານ |
|
8 |
15 |
|
mA |
|||||||||
ການໃຊ້ພະລັງງານປຸກປົກກະຕິ
|
|
700 (GD) |
1000 (GD) |
|
uA |
|||||||||
|
350 (APM) |
500 (APM) |
|
uA |
||||||||||
|
300 (ST) |
400 (ST) |
|
uA |
||||||||||
ການໃຊ້ພະລັງງານນອນທັງໝົດຂອງກະດານ
|
|
32 |
50 |
|
uA |
ຫມາຍເຫດ: 1. chip ທີ່ແຕກຕ່າງກັນມີອໍານາດທີ່ແຕກຕ່າງກັນ ການບໍລິໂພກ;
ໄດ້ ຕົວກໍານົດການຂ້າງເທິງນີ້ແມ່ນຄ່າແນະນໍາແລະຜູ້ໃຊ້ສາມາດປັບປຸງແກ້ໄຂໃຫ້ເຂົາເຈົ້າອີງຕາມການ ຄໍາຮ້ອງສະຫມັກຕົວຈິງ.
ຮູບທີ 7: ແຜນວາດຫຼັກການປ້ອງກັນ
ຮູບທີ 12: ຂະໜາດຫຼັງປະກອບ:: 140*80 ໜ່ວຍ: mm ຄວາມທົນທານ: ±0.5mm
ຄວາມຫນາຂອງກະດານປ້ອງກັນ: ຫນ້ອຍກວ່າ 20mm (ລວມທັງອົງປະກອບ)
ຮູບທີ 11: ແຜນວາດສາຍໄຟຂອງກະດານປ້ອງກັນ
ລາຍການ |
ລາຍລະອຽດ |
|
B+ |
ເຊື່ອມຕໍ່ກັບດ້ານບວກຂອງຊອງ. |
|
ຂ- |
ເຊື່ອມຕໍ່ກັບດ້ານລົບຂອງຊຸດ. |
|
P-/C- |
ການສາກໄຟ/ການປົດປ່ອຍພອດລົບ. |
|
J1 |
1 |
H ສາມາດສື່ສານສາຍ H |
2 |
L ສາມາດສື່ສານສາຍ L |
|
J2 |
1 |
ການສະຫນອງພະລັງງານ GPRS |
2 |
GPRS ສາຍດິນສະຫນອງພະລັງງານ |
|
3 |
WAKE_BMS, ປຸກ BMS PIN (ບໍ່ມີປະໂຫຍດຊົ່ວຄາວ) |
|
4 |
ພອດ GPRS IO (ບໍ່ມີປະໂຫຍດຊົ່ວຄາວ) |
|
5 |
RX |
|
6 |
TX |
|
J7 |
1 |
ເຊື່ອມຕໍ່ກັບ Negative ຂອງ Cell 1. |
2 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 1. |
|
3 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 2. |
|
4 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 3. |
|
5 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 4. |
|
6 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 5. |
|
7 |
NC |
|
8 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 6 |
|
9 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 7 |
|
10 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 8 |
|
11 |
NC |
|
12 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 9 |
|
13 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 10 |
|
J3 |
1 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 11 |
2 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 12 |
|
3 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 13 |
|
4 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 14 |
|
5 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 15 |
|
6 |
NC |
|
7 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 16 |
|
8 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 17 |
|
9 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 18 |
|
10 |
NC |
|
11 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 19 |
|
12 |
ເຊື່ອມຕໍ່ຫາດ້ານບວກຂອງເຊລ 20 |
|
J4 |
1 |
ສະຫຼັບການຄວບຄຸມຮູບແບບຜູ້ສູງອາຍຸ |
2 |
ສະຫຼັບການຄວບຄຸມຮູບແບບຜູ້ສູງອາຍຸ |
|
J5 |
1 |
HALL ສະຫຼັບຜົນຜະລິດ Hall |
2 |
GND |
|
3 |
3.3V |
|
J8 |
1 |
HALL ທີ່ຢູ່ ຂາອອກ Hall |
2 |
GND |
|
3 |
3.3V |
|
J6 |
1 |
NTC (NTC1)10K |
2 |
||
3 |
NTC (NTC2)10K |
ຮູບທີ 12: ແຜນວາດແຜນຜັງຂອງລໍາດັບການເຊື່ອມຕໍ່ຫມໍ້ໄຟ
ຄໍາເຕືອນ: ເມື່ອເຊື່ອມຕໍ່ແຜ່ນປ້ອງກັນກັບຈຸລັງຫມໍ້ໄຟຫຼືເອົາແຜ່ນປ້ອງກັນອອກຈາກຊຸດຫມໍ້ໄຟ, ຕ້ອງປະຕິບັດຕາມລໍາດັບແລະລະບຽບການດັ່ງຕໍ່ໄປນີ້; ຖ້າການດໍາເນີນການບໍ່ໄດ້ດໍາເນີນການຕາມລໍາດັບທີ່ກໍານົດໄວ້, ອົງປະກອບຂອງແຜ່ນປ້ອງກັນຈະເສຍຫາຍ, ສົ່ງຜົນໃຫ້ແຜ່ນປ້ອງກັນບໍ່ສາມາດປ້ອງກັນຫມໍ້ໄຟໄດ້. ຫຼັກ, ເຊິ່ງກໍ່ໃຫ້ເກີດຜົນສະທ້ອນທີ່ຮ້າຍແຮງ.
ການກະກຽມ: ດັ່ງທີ່ສະແດງຢູ່ໃນຮູບ 11, ເຊື່ອມຕໍ່ສາຍກວດຫາແຮງດັນທີ່ສອດຄ້ອງກັນກັບແກນຫມໍ້ໄຟທີ່ສອດຄ້ອງກັນ. ກະລຸນາເອົາໃຈໃສ່ກັບຄໍາສັ່ງທີ່ເຕົ້າຮັບຖືກຫມາຍ.
ຂັ້ນຕອນການຕິດຕັ້ງກະດານປ້ອງກັນ:
ຂັ້ນຕອນທີ 1: ເຊື່ອມຕໍ່ສາຍ P-/C- ກັບ P-/C- terminal ຂອງກະດານປ້ອງກັນໂດຍບໍ່ມີການເຊື່ອມຕໍ່ charger ແລະການໂຫຼດ;
ຂັ້ນຕອນທີ 2: ເຊື່ອມຕໍ່ຂົ້ວລົບຂອງຊຸດຫມໍ້ໄຟກັບ B- ຂອງກະດານປ້ອງກັນ;
ຂັ້ນຕອນທີ 3: ເຊື່ອມຕໍ່ປາຍທາງບວກຂອງຊຸດຫມໍ້ໄຟກັບ B+ ຂອງຄະນະປົກປັກຮັກສາ;
ຂັ້ນຕອນທີ 4: ເຊື່ອມຕໍ່ຊຸດຫມໍ້ໄຟແລະແຖວຫມໍ້ໄຟຂອງ J7 ໃນກະດານປ້ອງກັນ;
ຂັ້ນຕອນທີ 5: ເຊື່ອມຕໍ່ຊຸດຫມໍ້ໄຟແລະແຖວຫມໍ້ໄຟຂອງ J3 ຂອງກະດານປ້ອງກັນ;
ຂັ້ນຕອນທີ 6: ສາກໄຟ ແລະເປີດໃຊ້ງານ.
ຂັ້ນຕອນການຖອດແຜ່ນປ້ອງກັນ:
ຂັ້ນຕອນທີ 1: ຕັດການເຊື່ອມຕໍ່ອຸປະກອນສາກໄຟທັງໝົດ
ຂັ້ນຕອນທີ 2: ຖອດຊຸດຫມໍ້ໄຟແລະແຖບເຊື່ອມຕໍ່ຫມໍ້ໄຟ J3;
ຂັ້ນຕອນທີ 3: ຖອດຊຸດຫມໍ້ໄຟແລະແຖບເຊື່ອມຕໍ່ຫມໍ້ໄຟ J7;
ຂັ້ນຕອນທີ 4: ເອົາສາຍເຊື່ອມຕໍ່ທີ່ເຊື່ອມຕໍ່ທາງບວກຂອງຊຸດຫມໍ້ໄຟຈາກ B+ terminal ຂອງແຜ່ນປ້ອງກັນ.
ຂັ້ນຕອນທີ 5: ເອົາສາຍເຊື່ອມຕໍ່ທີ່ເຊື່ອມຕໍ່ທາງລົບຂອງຊຸດຫມໍ້ໄຟຈາກ B- terminal ຂອງແຜ່ນປ້ອງກັນ.
ຫມາຍເຫດເພີ່ມເຕີມ: ກະລຸນາເອົາໃຈໃສ່ກັບການປ້ອງກັນ electrostatic ໃນລະຫວ່າງການປະຕິບັດງານການຜະລິດ.
|
ປະເພດອຸປະກອນ |
ຕົວແບບ |
ການຫຸ້ມຫໍ່ |
ຍີ່ຫໍ້ |
ປະລິມານຢາ |
ສະຖານທີ່ |
1 |
ຊິບ IC |
BQ76940 |
TSSOP44 |
ຂອງ |
2 ໜ່ວຍ |
|
2 |
ຊິບ IC
|
GD32F303RCT6 ຫຼື GD32F303RET6 |
TQFP64 |
GD |
1PCS |
U18 ເລືອກຫນຶ່ງຈາກແປດ |
APM32F103RCT6 ຫຼື APM32F103RET6 ຫຼື |
APM |
|||||
APM32E103RCT6 ຫຼື APM32E103RET6 |
ST |
|||||
3 |
ທໍ່ SMD MOS |
SS023N100LS |
ໂທ |
SK |
10PCS |
|
4 |
PCB |
ປາ24S001-FET V1.1 |
140*80*1.6ມມ |
|
1PCS |
|
5 |
PCB |
ປາ24S001-MCU V1.1 |
131*72*1.6ມມ |
|
1PCS |
|
6 |
PCB |
ປາ24S001-DCDC V1.0 |
51*26*1.2ມມ |
|
1PCS |
|
ຫມາຍເຫດ: ຖ້າ SMD transistor: ທໍ່ MOS ແມ່ນບໍ່ມີຫຼັກຊັບ, ບໍລິສັດຂອງພວກເຮົາອາດຈະທົດແທນມັນດ້ວຍເຄື່ອງອື່ນໆ ແບບຈໍາລອງທີ່ມີລັກສະນະຄ້າຍຄືກັນ, ແລະພວກເຮົາຈະຕິດຕໍ່ສື່ສານແລະຢືນຢັນ.
1 Huizhou Feiyu New Energy Technology Co., Ltd. logo;
2 ຮູບແບບກະດານປ້ອງກັນ - (ຮູບແບບກະດານປ້ອງກັນນີ້ແມ່ນ Fish24S001, ກະດານປ້ອງກັນປະເພດອື່ນໆຖືກຫມາຍ, ບໍ່ມີຂອບເຂດຈໍາກັດກ່ຽວກັບຈໍານວນຕົວອັກສອນໃນລາຍການນີ້)
3. ຈໍານວນຂອງສາຍຫມໍ້ໄຟສະຫນັບສະຫນູນໂດຍຄະນະປົກປັກຮັກສາທີ່ຕ້ອງການ - (ຮູບແບບຂອງຄະນະປົກປັກຮັກສານີ້ແມ່ນເຫມາະສົມສໍາລັບຊຸດຫມໍ້ໄຟ 20S;
4 ຄ່າປະຈຸບັນການສາກໄຟ - 75A ຫມາຍຄວາມວ່າການສະຫນັບສະຫນູນສູງສຸດສໍາລັບການສາກໄຟຢ່າງຕໍ່ເນື່ອງແມ່ນ 75A;
5 Discharge ມູນຄ່າປະຈຸບັນ - 75A ຫມາຍຄວາມວ່າການສະຫນັບສະຫນູນສູງສຸດສໍາລັບການສາກໄຟຢ່າງຕໍ່ເນື່ອງແມ່ນ 75A;
6 ຂະຫນາດຄວາມຕ້ານທານການດຸ່ນດ່ຽງ - ຕື່ມຂໍ້ມູນໃສ່ໃນມູນຄ່າໂດຍກົງ, ສໍາລັບການຍົກຕົວຢ່າງ, 100R, ຫຼັງຈາກນັ້ນຄວາມຕ້ານທານການດຸ່ນດ່ຽງແມ່ນ 100 ohms;
7 ປະເພດຫມໍ້ໄຟ - ຕົວເລກຫນຶ່ງ, ຈໍານວນ serial ສະເພາະຊີ້ໃຫ້ເຫັນປະເພດຂອງຫມໍ້ໄຟດັ່ງຕໍ່ໄປນີ້
1 |
ໂພລີເມີ |
2 |
LiMnO2 |
3 |
LiCoO2 |
4 |
LiCoxNiyMnzO2 |
5 |
LiFePO4 |
8 ວິທີການສື່ສານ - ຈົດຫມາຍສະບັບຫນຶ່ງເປັນຕົວແທນຂອງວິທີການສື່ສານ, ຂ້າພະເຈົ້າເປັນຕົວແທນຂອງການສື່ສານ IIC, U ເປັນຕົວແທນການສື່ສານ UART, R ເປັນຕົວແທນການສື່ສານ RS485, C ເປັນຕົວແທນຂອງການສື່ສານ CAN, H ເປັນຕົວແທນຂອງການສື່ສານ HDQ, S ເປັນຕົວແທນການສື່ສານ RS232, 0 ເປັນຕົວແທນທີ່ບໍ່ມີການສື່ສານ, ຜະລິດຕະພັນນີ້ C ຢືນ. ສໍາລັບການສື່ສານ CAN;
9 ຮຸ່ນຮາດແວ - V1.1 ຫມາຍຄວາມວ່າສະບັບຮາດແວແມ່ນຮຸ່ນ 1.1.
10 ຈໍານວນຕົວແບບຂອງກະດານປ້ອງກັນນີ້ແມ່ນ: WH-Fish24S001-20S-75A-75A-100R-4-C-V1.1. ກະລຸນາຈັດວາງຄໍາສັ່ງຕາມຈໍານວນຕົວແບບນີ້ໃນເວລາທີ່ການສັ່ງຈໍານວນຫຼາຍ.
1. ເມື່ອປະຕິບັດການທົດສອບການສາກໄຟ ແລະການປ່ອຍນໍ້າໃສ່ຊຸດຫມໍ້ໄຟທີ່ມີການຕິດຕັ້ງກະດານປ້ອງກັນ, ກະລຸນາຢ່າໃຊ້ຕູ້ອາຍຸຂອງແບດເຕີລີ່ເພື່ອວັດແທກແຮງດັນຂອງແຕ່ລະຫ້ອງໃນຊຸດຫມໍ້ໄຟ, ຖ້າບໍ່ດັ່ງນັ້ນກະດານປ້ອງກັນແລະຫມໍ້ໄຟອາດຈະເສຍຫາຍ. .
2. ກະດານປ້ອງກັນນີ້ບໍ່ມີຫນ້າທີ່ສາກໄຟ 0V. ເມື່ອແບດເຕີຣີຮອດ 0V, ປະສິດທິພາບຂອງແບດເຕີລີ່ຈະຖືກຊຸດໂຊມຢ່າງຮ້າຍແຮງແລະອາດຈະຖືກທໍາລາຍ. ເພື່ອບໍ່ໃຫ້ແບດເຕີຣີເສຍຫາຍ, ຜູ້ໃຊ້ບໍ່ຄວນສາກແບດເຕີລີ່ເປັນເວລາດົນ (ຄວາມຈຸຂອງແບັດເຕີລີ່ສູງກວ່າ 15AH, ແລະການເກັບຮັກສາເກີນ 1 ເດືອນ) ເມື່ອບໍ່ໃຊ້, ມັນຈໍາເປັນຕ້ອງໄດ້ສາກໄຟເປັນປະຈໍາເພື່ອເຕີມເຕັມ. ຫມໍ້ໄຟ; ເມື່ອໃຊ້, ມັນຕ້ອງຖືກສາກໄຟໃຫ້ທັນເວລາພາຍໃນ 12 ຊົ່ວໂມງຫຼັງຈາກຖອດອອກເພື່ອປ້ອງກັນບໍ່ໃຫ້ແບດເຕີລີ່ຖືກປ່ອຍອອກມາເປັນ 0V ເນື່ອງຈາກການບໍລິໂພກຂອງຕົນເອງ. ລູກຄ້າຈໍາເປັນຕ້ອງມີເຄື່ອງຫມາຍທີ່ຊັດເຈນກ່ຽວກັບທໍ່ຫມໍ້ໄຟທີ່ຜູ້ໃຊ້ຮັກສາຫມໍ້ໄຟເປັນປະຈໍາ.
3. ກະດານປ້ອງກັນນີ້ບໍ່ມີຫນ້າທີ່ປ້ອງກັນການສາກໄຟຍ້ອນກັບ. ຖ້າຂົ້ວຂອງສາຍສາກຖືກປີ້ນຄືນ, ກະດານປ້ອງກັນອາດຈະເສຍຫາຍ.
4. ກະດານປ້ອງກັນນີ້ຈະບໍ່ຖືກນໍາໃຊ້ໃນຜະລິດຕະພັນທາງການແພດຫຼືຜະລິດຕະພັນທີ່ອາດຈະສົ່ງຜົນກະທົບຕໍ່ຄວາມປອດໄພສ່ວນບຸກຄົນ.
5. ບໍລິສັດຂອງພວກເຮົາຈະບໍ່ຮັບຜິດຊອບຕໍ່ອຸປະຕິເຫດໃດໆທີ່ເກີດຈາກເຫດຜົນຂ້າງເທິງໃນລະຫວ່າງການຜະລິດ, ການເກັບຮັກສາ, ການຂົນສົ່ງແລະການນໍາໃຊ້ຜະລິດຕະພັນ.
6. ຂໍ້ກໍາຫນົດນີ້ແມ່ນມາດຕະຖານການຢືນຢັນການປະຕິບັດ. ຖ້າການປະຕິບັດທີ່ຕ້ອງການໂດຍຂໍ້ກໍາຫນົດນີ້ແມ່ນບັນລຸໄດ້, ບໍລິສັດຂອງພວກເຮົາຈະປ່ຽນແປງຮູບແບບຫຼືຍີ່ຫໍ້ຂອງວັດສະດຸບາງຢ່າງຕາມວັດສະດຸຄໍາສັ່ງໂດຍບໍ່ມີການແຈ້ງການເພີ່ມເຕີມ.
7. ຫນ້າທີ່ປ້ອງກັນລັດວົງຈອນຂອງລະບົບການຈັດການນີ້ແມ່ນເຫມາະສົມສໍາລັບສະຖານະການຄໍາຮ້ອງສະຫມັກທີ່ຫຼາກຫຼາຍ, ແຕ່ມັນບໍ່ໄດ້ຮັບປະກັນວ່າມັນສາມາດເປັນວົງຈອນສັ້ນພາຍໃຕ້ເງື່ອນໄຂໃດໆ. ເມື່ອຄວາມຕ້ານທານພາຍໃນທັງຫມົດຂອງຊຸດຫມໍ້ໄຟແລະວົງຈອນວົງຈອນສັ້ນແມ່ນຫນ້ອຍກວ່າ 40mΩ, ຄວາມອາດສາມາດຂອງຊອງຫມໍ້ໄຟເກີນມູນຄ່າການຈັດອັນດັບ 20%, ກະແສໄຟຟ້າວົງຈອນສັ້ນເກີນ 1500A, inductance ຂອງວົງຈອນວົງຈອນສັ້ນແມ່ນຂະຫນາດໃຫຍ່ຫຼາຍ. , ຫຼືຄວາມຍາວທັງຫມົດຂອງສາຍລັດວົງຈອນສັ້ນແມ່ນຍາວຫຼາຍ, ກະລຸນາທົດສອບຕົວທ່ານເອງເພື່ອກໍານົດວ່າລະບົບການຄຸ້ມຄອງນີ້ສາມາດນໍາໃຊ້ໄດ້.
8. ໃນເວລາທີ່ການເຊື່ອມໂລຫະຫມໍ້ໄຟນໍາ, ຈະຕ້ອງບໍ່ມີການເຊື່ອມຕໍ່ທີ່ຜິດພາດຫຼືການເຊື່ອມຕໍ່ປີ້ນກັບກັນ. ຖ້າຫາກວ່າມັນຖືກເຊື່ອມຕໍ່ຢ່າງແທ້ຈິງບໍ່ຖືກຕ້ອງ, ແຜ່ນວົງຈອນອາດຈະໄດ້ຮັບຄວາມເສຍຫາຍແລະຈໍາເປັນຕ້ອງໄດ້ຮັບການທົດສອບໃຫມ່ກ່ອນທີ່ຈະນໍາໃຊ້.
9. ໃນລະຫວ່າງການປະກອບ, ລະບົບການຈັດການບໍ່ຄວນຕິດຕໍ່ໂດຍກົງກັບພື້ນຜິວຂອງແກນຫມໍ້ໄຟເພື່ອຫຼີກເວັ້ນການທໍາລາຍແຜ່ນວົງຈອນ. ການປະກອບຕ້ອງມີຄວາມຫນັກແຫນ້ນແລະເຊື່ອຖືໄດ້.
10. ໃນລະຫວ່າງການນໍາໃຊ້, ລະມັດລະວັງບໍ່ໃຫ້ແຕະທີ່ປາຍນໍາ, ທາດເຫຼັກ soldering, solder, ແລະອື່ນໆກ່ຽວກັບອົງປະກອບຂອງແຜ່ນວົງຈອນ, ຖ້າບໍ່ດັ່ງນັ້ນແຜ່ນວົງຈອນອາດຈະເສຍຫາຍ.
ເອົາໃຈໃສ່ກັບການຕ້ານການ static, ຄວາມຊຸ່ມຊື້ນ, ກັນນ້ໍາ, ແລະອື່ນໆໃນໄລຍະການນໍາໃຊ້.
11. ກະລຸນາປະຕິບັດຕາມຕົວກໍານົດການອອກແບບແລະເງື່ອນໄຂການນໍາໃຊ້ໃນລະຫວ່າງການໃຊ້, ແລະຄ່າໃນຂໍ້ກໍານົດນີ້ຕ້ອງບໍ່ເກີນ, ຖ້າບໍ່ດັ່ງນັ້ນລະບົບການຈັດການອາດຈະເສຍຫາຍ. ຫຼັງຈາກປະກອບຊຸດຫມໍ້ໄຟແລະລະບົບການຈັດການ, ຖ້າທ່ານພົບວ່າບໍ່ມີແຮງດັນໄຟຟ້າຫຼືຄວາມລົ້ມເຫຼວຂອງການສາກໄຟໃນເວລາທີ່ທ່ານເປີດຄັ້ງທໍາອິດ, ກະລຸນາກວດເບິ່ງວ່າສາຍໄຟຖືກຕ້ອງຫຼືບໍ່.